Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Enhanced dye-sensitized solar cells performance of ZnO nanorod arrays grown by low-temperature hydrothermal reaction

Identifieur interne : 000D56 ( Main/Repository ); précédent : 000D55; suivant : 000D57

Enhanced dye-sensitized solar cells performance of ZnO nanorod arrays grown by low-temperature hydrothermal reaction

Auteurs : RBID : Pascal:13-0368905

Descripteurs français

English descriptors

Abstract

Well-aligned zinc oxide (ZnO) nanorod arrays were formed on indium tin oxide (ITO)/glass substrates via a low-temperature hydrothermal growth of a sol-gel-derived seed layer. The seed layer was heat treated at 300°C for 10 min prior to the hydrothermal growth using optimized conditions from our previous work to form well-aligned ZnO nanorod arrays. Hydrothermal growth time was varied for 4, 8, 12 and 24 h. Flat-top hexagonal ZnO nanorod arrays were obtained, and the length of the ZnO nanorods formed increased from approximately 150 nm after 4 h to approximately 2 μm after 24 h using a single reactive bath. X-ray diffraction patterns showed predominant ZnO peak at (002) plane for all the samples. Photoluminescence spectra of the ZnO nanorod arrays showed peaks at ultra-violet and green region, which indicated good crystalline crystal formation containing oxygen-related defects. Raman scattering results obtained showed strong band at 438 cm-1 that correlated to E2 non-polar hexagonal wurtzite phase. Dye-sensitized solar cells (DSSC) based on the well-aligned ZnO nanorod arrays were fabricated. The maximum conversion efficiency of 0.22% was achieved for the nanorods formed after a prolonged hydrothermal time of 24 h. The conversion efficiency of the DSSC increased with hydrothermal exposure time as longer ZnO nanorods provided larger surface for dye adsorption to generate more electrons. Improved crystallinity of the ZnO nanorods provided at prolonged hydrothermal time also contributed to the higher conversion efficiency as the electron transportation was enhanced.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0368905

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Enhanced dye-sensitized solar cells performance of ZnO nanorod arrays grown by low-temperature hydrothermal reaction</title>
<author>
<name sortKey="Tan, Wai Kian" uniqKey="Tan W">Wai Kian Tan</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology</s1>
<s2>Toyohashi, Aichi 441-8580</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Toyohashi, Aichi 441-8580</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lockman, Zainovia" uniqKey="Lockman Z">Zainovia Lockman</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>School of Materials and Mineral Resources, Universiti Sains Malaysia, Engineering Campus</s1>
<s2>Nibong Tebal 14300 Pulau Pinang</s2>
<s3>MYS</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Malaisie</country>
<wicri:noRegion>Nibong Tebal 14300 Pulau Pinang</wicri:noRegion>
</affiliation>
</author>
<author>
<name>KHAIRUNISAK ABDUL RAZAK</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>School of Materials and Mineral Resources, Universiti Sains Malaysia, Engineering Campus</s1>
<s2>Nibong Tebal 14300 Pulau Pinang</s2>
<s3>MYS</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Malaisie</country>
<wicri:noRegion>Nibong Tebal 14300 Pulau Pinang</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kawamura, Go" uniqKey="Kawamura G">Go Kawamura</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology</s1>
<s2>Toyohashi, Aichi 441-8580</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Toyohashi, Aichi 441-8580</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Muto, Hiroyuki" uniqKey="Muto H">Hiroyuki Muto</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology</s1>
<s2>Toyohashi, Aichi 441-8580</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Toyohashi, Aichi 441-8580</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Matsuda, Atsunori" uniqKey="Matsuda A">Atsunori Matsuda</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology</s1>
<s2>Toyohashi, Aichi 441-8580</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Toyohashi, Aichi 441-8580</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0368905</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0368905 INIST</idno>
<idno type="RBID">Pascal:13-0368905</idno>
<idno type="wicri:Area/Main/Corpus">000399</idno>
<idno type="wicri:Area/Main/Repository">000D56</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0363-907X</idno>
<title level="j" type="abbreviated">Int. j. energy res.</title>
<title level="j" type="main">International journal of energy research</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adsorption</term>
<term>Indium</term>
<term>Low temperature</term>
<term>Oxygen</term>
<term>Performance</term>
<term>Photovoltaic conversion</term>
<term>Solar cell</term>
<term>Tin</term>
<term>X ray diffractometry</term>
<term>Zinc</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Cellule solaire</term>
<term>Conversion photovoltaïque</term>
<term>Performance</term>
<term>Basse température</term>
<term>Zinc</term>
<term>Indium</term>
<term>Etain</term>
<term>Diffractométrie RX</term>
<term>Oxygène</term>
<term>Adsorption</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Zinc</term>
<term>Oxygène</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Well-aligned zinc oxide (ZnO) nanorod arrays were formed on indium tin oxide (ITO)/glass substrates via a low-temperature hydrothermal growth of a sol-gel-derived seed layer. The seed layer was heat treated at 300°C for 10 min prior to the hydrothermal growth using optimized conditions from our previous work to form well-aligned ZnO nanorod arrays. Hydrothermal growth time was varied for 4, 8, 12 and 24 h. Flat-top hexagonal ZnO nanorod arrays were obtained, and the length of the ZnO nanorods formed increased from approximately 150 nm after 4 h to approximately 2 μm after 24 h using a single reactive bath. X-ray diffraction patterns showed predominant ZnO peak at (002) plane for all the samples. Photoluminescence spectra of the ZnO nanorod arrays showed peaks at ultra-violet and green region, which indicated good crystalline crystal formation containing oxygen-related defects. Raman scattering results obtained showed strong band at 438 cm
<sup>-1</sup>
that correlated to E
<sub>2</sub>
non-polar hexagonal wurtzite phase. Dye-sensitized solar cells (DSSC) based on the well-aligned ZnO nanorod arrays were fabricated. The maximum conversion efficiency of 0.22% was achieved for the nanorods formed after a prolonged hydrothermal time of 24 h. The conversion efficiency of the DSSC increased with hydrothermal exposure time as longer ZnO nanorods provided larger surface for dye adsorption to generate more electrons. Improved crystallinity of the ZnO nanorods provided at prolonged hydrothermal time also contributed to the higher conversion efficiency as the electron transportation was enhanced.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0363-907X</s0>
</fA01>
<fA02 i1="01">
<s0>IJERDN</s0>
</fA02>
<fA03 i2="1">
<s0>Int. j. energy res.</s0>
</fA03>
<fA05>
<s2>37</s2>
</fA05>
<fA06>
<s2>15</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Enhanced dye-sensitized solar cells performance of ZnO nanorod arrays grown by low-temperature hydrothermal reaction</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Recent progress in sustainable energy systems</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>TAN (Wai Kian)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>LOCKMAN (Zainovia)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>KHAIRUNISAK ABDUL RAZAK</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>KAWAMURA (Go)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>MUTO (Hiroyuki)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>MATSUDA (Atsunori)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>YAN (J.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>CHOU (S. K.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>DAHLQUIST (E.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology</s1>
<s2>Toyohashi, Aichi 441-8580</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>School of Materials and Mineral Resources, Universiti Sains Malaysia, Engineering Campus</s1>
<s2>Nibong Tebal 14300 Pulau Pinang</s2>
<s3>MYS</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>School of Chemical Science and Engineering, Royal Institute of Technology</s1>
<s2>100 44 Stockholm</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>School of Sustainable Development of Society and Technology, Mälardalen University</s1>
<s2>72123 Västerås</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</fA15>
<fA15 i1="03">
<s1>Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Blk EA, #04-12</s1>
<s2>Singapore 117576</s2>
<s3>SGP</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA15 i1="04">
<s1>Energy Studies Institute, National University of Singapore, 29 Heng Mui Keng Terrace, Blk A, #10-01</s1>
<s2>Singapore 119620</s2>
<s3>SGP</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA20>
<s1>1992-2000</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>17698</s2>
<s5>354000504252800060</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>42 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0368905</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>International journal of energy research</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Well-aligned zinc oxide (ZnO) nanorod arrays were formed on indium tin oxide (ITO)/glass substrates via a low-temperature hydrothermal growth of a sol-gel-derived seed layer. The seed layer was heat treated at 300°C for 10 min prior to the hydrothermal growth using optimized conditions from our previous work to form well-aligned ZnO nanorod arrays. Hydrothermal growth time was varied for 4, 8, 12 and 24 h. Flat-top hexagonal ZnO nanorod arrays were obtained, and the length of the ZnO nanorods formed increased from approximately 150 nm after 4 h to approximately 2 μm after 24 h using a single reactive bath. X-ray diffraction patterns showed predominant ZnO peak at (002) plane for all the samples. Photoluminescence spectra of the ZnO nanorod arrays showed peaks at ultra-violet and green region, which indicated good crystalline crystal formation containing oxygen-related defects. Raman scattering results obtained showed strong band at 438 cm
<sup>-1</sup>
that correlated to E
<sub>2</sub>
non-polar hexagonal wurtzite phase. Dye-sensitized solar cells (DSSC) based on the well-aligned ZnO nanorod arrays were fabricated. The maximum conversion efficiency of 0.22% was achieved for the nanorods formed after a prolonged hydrothermal time of 24 h. The conversion efficiency of the DSSC increased with hydrothermal exposure time as longer ZnO nanorods provided larger surface for dye adsorption to generate more electrons. Improved crystallinity of the ZnO nanorods provided at prolonged hydrothermal time also contributed to the higher conversion efficiency as the electron transportation was enhanced.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>05</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>05</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>05</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Conversion photovoltaïque</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Photovoltaic conversion</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Conversión fotovoltaica</s0>
<s5>06</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Performance</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Performance</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Rendimiento</s0>
<s5>07</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Basse température</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Low temperature</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Baja temperatura</s0>
<s5>08</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Zinc</s0>
<s2>NC</s2>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Zinc</s0>
<s2>NC</s2>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Zinc</s0>
<s2>NC</s2>
<s5>09</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Indium</s0>
<s2>NC</s2>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Indium</s0>
<s2>NC</s2>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Indio</s0>
<s2>NC</s2>
<s5>10</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Etain</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>11</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Tin</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>11</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Estaño</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>11</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Diffractométrie RX</s0>
<s5>12</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>X ray diffractometry</s0>
<s5>12</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Difractometría RX</s0>
<s5>12</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Oxygène</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>13</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Oxygen</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>13</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Oxígeno</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>13</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Adsorption</s0>
<s5>14</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Adsorption</s0>
<s5>14</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Adsorción</s0>
<s5>14</s5>
</fC03>
<fN21>
<s1>350</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>ICAE International Conference on Applied Energy</s1>
<s3>Suzhou CHN</s3>
<s4>2012-07-01</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D56 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000D56 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0368905
   |texte=   Enhanced dye-sensitized solar cells performance of ZnO nanorod arrays grown by low-temperature hydrothermal reaction
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024